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REPORT No.213

A RESUME OF THE ADVANCES IN THEORETICAL AERONAUTICS
MADE BY MAX M. MUN’K

By JOSEPHS. AMES

INTRODUCI’ION

In order to apply profitably the mathematical methods of hydrodynamics to aeronautical
probkxns, it is’necessary to make certain simplifications in the physical conditions of the latter.

. To begin with, it is allowable in many problems, as Prandtl has so successfully down, to treat
the air as having constant density and as free of viscosity. But this is not sufficient. It is
also necessary to specify certain shapes for the solid bodies vihose motion through the air is
discussed, shapes suggested by the actual solids-airships or airfoils — it is true, but so chosen
that they lead to salvable problems.

b a mduable paper presented by Dr. Max M. Munk, of the National Advisory Committee
for Aeronautics, Washington, before the Delft Conference in April, 1924, these necessary sim-
plifying assumptions are discuswxl in detail. It is the purpose of the present paper to present
in as simple a manner as possible some of the interesting results obtained by Dr. Munk’s
methods. For fuUer details and a d~cuesion of many practicaI questions reference shouId be
made to Munk’s original papem:

1. The Aerodynamic Forces on Airship Hulls. N. A. C. A. ~pOti No. 134, 1924.
2. Elements of the Wing SectionTheory and of the Wing Theory. N. A. C. A. Report No. 191, 1924.
3. Remarks on the Pressure Dtiribution Over the Surface of an Ellipsoid, Moving Translationally

Through a Perfect Fluid. N. A. C. A. Technical Note No. 196, 1924.
4. The Minimum Induced Drag of Aerofoils. N. A. C. A. Report No. 121, 1921.
5. General Theory of Thin Wing Sections. N. A. c. A. RSpOrt No. 142, 1922.
& Determination of the Anglesof Attsck of Zero Lift and of Zero Moment, Based on Munk’s Integrals.

N. A. C. A. Technical Note No. 122, 1923.
7. General BlpIane Theory. N. A. C. A. Rqort No. 151, 1922.

GENERAL PRINCIPLES OF HYDRODYNAMICS

In all the practical problems to be discussed, only the most genereJ @ncipks of hydro-
dynamics are used and in practically dl cases the problems are reduced to questions involving
only energy and momentum. It may be worth while to deduce the few equations necessary,
although they are given in every textbook.

Site air is a fluid, the pressure is everywhere perpendicular to any surface through which
it is transferred. If u, v, w are components of the velocity of flow at any point,

since the density is considered to be constant. The entire energy of the flow is kinetic, and
therefore

T=; Pf (U’+@ +@) d~
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where & is an element of volume of the fluicl. By Netiton’s law of motion

‘$d’d’d2=[’-(’+*dz)ld’&=-%’’d’d2
or

du at)
P~=–~z

This may be written .

,du=-w

The impulse per unit area in the time dt is, by definition, pci%; So the infinitesimal change
in velocity du can be considered as produced by the infinitesimal impulse pd, and a finite
velocity u may be considered as produced from a state of rest by the finite impulse PcJpdt.
where, then

bP
‘7L=–G”—” - - ‘--” “ ‘“’ ‘“ “-- “-” “

-.—.--.—
or

aP()‘=% –;

Similarly, the other two components of the velocity of flow at any point will be defined by

Flows such as this, where
‘=W9,”=W

bQ bQ bQ

‘-m‘=Fy’‘=-E
are called “potential flows,” and P is called the ‘~velocity potential.” In this case, when the
flow is considered as produced by an impulse, P,

P
v= –;--”-==== :“-

. L. (~)
--—--”: ”---’ ‘--------------- --

or, the impulse per unit area, equals - pp. ‘
There are cases .d. potentiaI flow in which q is not a single-wdued function, and in such

P=–p (p, –q2). ------. -----.. ------.. --. --. --(la)

where pi and 92 are the values of p at the same point. Since P2– ql =
J

2(’udz+I@/ + ILilz),
1

if ~ and ~ refer to the same point, the integral is called the ‘;circulation,” and, if its value is
P, the equation may be written P = +PI.L, where p is in the direction of the flow.

& an illustration, consider the flow discussed later, equation (4 I), in which, for any point
on the axis of z,

p=Ao sin–l r

The flow is a two-diniensional one, as shown in the @ure. Consider an imaginary surface
at z, having a minuta length along the axis of z and unit length perpendicular to the plane
of the paper. Let the point 1 be on the lower side of the surface and the point 2 on the upper,
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2--------------------
x 1

.

J

2
~–pt= (iV =% A.

1
when the points approach each other indtitely. The imP&e per unit area at the point 1
is – PW’and its action is downward, being perpendicular to the fluid surface below the imagg-
nsry surface; at the point 2 the impuke per unit area is —pm, acting upward, since it is
perpendicular to the fluid surfaoe above the imaginary surface. Therefore the total impulse
per unit area acting downward on the fluid is

P=p (q–qJ =&?TAo
Again, sinoe *

~+%~w=o,ax ay a2

P must satisfy everywhere in the fl&d the equaticm

++~~++=o
ati ap a~

Making use &iin of Newton’s equation, and taking into account the faot that, in general,
u, v, and w are functions of (t, z, y, z), the general equations of motion are

and two simiIar ones for$and ~.

But .

au av_ ~d th=aw
ay ax az Z

since

therefore

I*
g+uag+vg+wg=––

p ax
or

with two simiIar equations for y and z. On integration, these three equations give
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Written differently,

a~ c–; (u’+?? +@)
P=–pz+

bP=O) andIn the case of a steady state ~

p=c–; (u’+@ +d). ---.-------.---.-.....-----..(2)

which is Bernouilli’s famous theorem. If there is a portion of space in which the fluid is at rest,
the prwsure there equals C.

The work done by an impulse is proved in mechanics to be the product of the impulse by the
average of the initial and flmd velocities in the direction of the impulse. If a solid is moving
through a fluid otherwise at rest, and if the existing fluid motion is considered as having been pro-
duced from rest by impulses applied by the surface of the body, the velocity normal to any

‘P here dn is drawn from the body into the fluid, and the mean value of
‘lement ‘f ‘tiace * K w

1 ‘q further, the impulse, normal to the surface &S, acting onthis and the initial zero velocity is ~ ~;

the ffdd is –pp . dS. Therefore, the Enetic energy of the fluid is

J
‘p dti’ taken over the surface of the solid body.. ------ --_. (3)T=–; ~G ,

Other general principl~ wiIl be, discussed as the occasion arises.

PROBLEMS MORE SPECIALLY CONCERNING AIRSHIPS

INTEODUC’ITON .

The fundamental problems concerning airships are: (1) the determination of the mmnenb
acting on them under varying conditions of flight; (2) the determination of the distribution of
transverse forces; (3) the distribution of pressure over the envelope.

These problems can be sohd, at least approxim@ely, by the application of certain general
theorems. .

When a body tioves through a fluid otherwise at rest, there is a certain amount of kinctio
energy of the fluid caused by the motion of the body. If the latter is moving with a velocity V
in a definite direction, if T is the kinetic energy of the fluid due to the motion of the body, and if *

1’
p k the density of the fluid, by detition ~ is called the ‘(apparent additional mass” of the

~ Vz

body for motion in that-particular direction, and is written K p,
As an illustration, consider an infinitely long circular cylinder moving transversely in a

definite. direction with a velocity V, Choose this direction as the axis for a set of polar coordi-
nates whose origin k on the axis of the moving cylinder. The velocity of any particIe of the fluid
will be in a plane perpendicular to the axis of the cylinder, so the flow is called two-dimensional, or
uniplanar, A particle in contact with the cylinder must have the same component of velocity
normal to the cylinder as the wall of the cylinder at that point, So, if r and 8 are the polar
coordinates of any point of the fluid in a particular transverse plane, and if R is the radius of
the cylinder, this condition may be expressed by writing

bql

()z’ ,.R
=-v Cos 8.,

if e. denotes the point on the cylinder. This leads at–once
the fluid, r, 8, viz

~= VIP Cofio
r

to the value of P for any point in
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for it maybe pro~ed that this satisfies both

and the condition just expressed for the surface of the cylinder. Hence the kinetic energy of
flow

becomw, since at r= R, y= – H? cos 6., $= V cos & md ds = RW, where ~ is w W@

desired of the cylinder, I

s
2%$ PR% *COSZ80 d80=; % R%

o

Consequently the apparent additional mass is

T’
— =pr R%
;P

i. e., is the mass of the fluid displaced by the cylinder. This is sometim= eXPIWSSe& ~~

reference to the two-dimensional flow, by saying that the ‘<apparent mass of a circle is PTIP.”

It wiIl be proved later that if a plane lamim infinite in length and of width b is moving
—

transversely with a velocity V, the flow being aga~ two dimensional, the apparent additional
~a

()mass of a length h of the lamina is ~ ~ h (the same as for a circular cylinder whose diameter . . .

~z.ois b.) So the apparent transverse mass of a straight line of length b is w ~ In a two-dimen-

sional flow, this really beiq the apparent mass of a portion of length unity of an ir&itely long
lsxnina whose width is 7J.

If a body is moving in a definite direction with a constant Yelocity, the flow accompanies
the body, so that the kinetic energy dom not change, therefore there is no drag, which would
absorb energy. Further, if the flow gives rise to a single-valued velocity potential, there is no
lift. .(See a later section.) But although, therefore, the resultant force is zero, there may be
a moment act~~ on the body.

This may best be seen by a consideration of the momentum of the flow. When the body
is moving with the velocity ~ in a definite direotion, let there be a component of momentum
of flow perpendicular to this direction and let its amount be Ap V. Then, with reference to
any ati perpendicular to the plane including the line of velocity and the direction of the com-
ponent of momentum, there is a certain moment of momentum; and, as the body moves a dis-
tance Tin a unit time, this moment of momentum increases in that time by an amount T. Ap F.
An equal but opposite moment around the specified axis must, therefore, be acting on the body.
Hence, moment = velocity of body x component of ‘momentum of flow perpendicular to the
axis of the moment and ‘to the direction of the velocity. ‘J%e “sense ‘J of the moment is easily
seen.

Conversely, if the body does not experience any moment, the momentum of the flow must
be entirely in the line of motion of the body.

If a soIid body is held stationary in a unjform flow, the kinetic energy of the entire mite
flow is of course i.nflnite, but 1sss than it wouId be if the body were absent, owing to two reasons:
(1) The solid displac= an equal volume of the fluid, which otherwise would be in motion; (2) the
veIocity of the flow is reducd in front of and behind the body. This decreme ~ ~etic energy
for a definite velocity of flow equals the kinetic energy of the total flow if the solid is mom
in a stationary fluid with the same velocity as the velocity of flow in the &St case.

-..:
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When the solid is at rest in a uniform flow, lettit be turned slightly through an angle da
about a definite axis; if there is a moment about this axis acting on the body in such a sense
that it opposes the rotation da, work will be required to turn the body, and the kinetic energy
of the fluid, T’, will increase by an amount equal to the product of this moment and the angular
displacement. Similarly, if the moment is in the same sense as da, –dT’ = Ma. Therefore,
if now the body is moving through a stationary fluid, .iKda= d T, since d T= – d Tf. Hence

x=~..--....(4)-.--.---2_-.-------.--.----(4)
where M is the moment acting on the body around a definite axis, in the same ‘{sense”. as da,
the angular displacement around this axis,

If, therefore, for a given direction of motion, Tis a maximum, a slight change da wotid result
in a decrease of 2’, and kf would be negative, indicating a moment acting on the body in such a
sense as to oppose the change da. Suoh a direction of motion would therefore be one of stable
equilibrium. Similarly, if T is a minimum for a given line of motion, there is unstable equi-
librium.

In general, if any motion is generated from rest by an impulse, the work done equals the prod-
uct of the impulse by half the component of the velocity in the direction of the impulse. The
impulse equals the momentum; therefore, the kinetic energy equals one-half the scalar product
of the momentum and the velocity. This theorem may be applied to the fluid motions produced
by the motion of solids through them.

A body gives rise to a definite kinetic energy of flow if it has a constant velocity in a specified
direction; and, if its motion is reversed, it will give rise to the same amount, because the flow at
each point of the fluid is revemed. (This is evident because the effect of tho presence .cJ the
solid body when at red in a stream of fluid may be duplicated by a certain distribution of
sourcesand sinks, giving rise to the same field of velocity potential as before, outside the space
previously occupied by the solid; then, if the stream is reversed and each source is made inh a
sink of an equal strength and ViCS versa, the potential field is exactly revemed, so that the
velocity at each point is reversed.) The kinetic ~ergy k different for directions of motion other
than as specified, but it is always a positive number. Therefore, as the orientation of the Iine
of motion of the body is changed from some definite one to iti opposite, there must be two
lines of motion=omewhere between—for one of which tie kinetic energy is a maximum and
for the other of which it is a minimum. For motiori in either of these directions, therefore,
a T= O; that is, for any small angular &placement b around an tmia perpendicular to the
direction of motion 6T= O. C?onse@ently there is no moment acting on the body if it is moving

in either of these two directions; and the body may therefore be said to be in equilibrium,
stable if T is, a maximum and unstable if T is a minimum.

Let a body be moving with a velocity ~ in SUCh a direction that it is in equilibrium; calI
the direction X. The momentum of the fiOW must be ti the same direction, otherwise there

,,, .?

Y
& ,<,,,

,.,
,,”

,,,
,’

,,,
,.,

Fm.2

would be a moment; call ite value KIPV. Keeping the orientation of the body unchanged,
make the line of motion with the velocity V perpendicular to A, i, e, along ~; let the com-
ponent along ~ of the momentum of the flow be called Cp V, its component along ~ be called -.
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DPV, and its component perpendicular to the pkme of ~ and ~ be called EPF. ii.ga~n, let its line
of motion with velocity ~ be in the plane of X and B, making an ande a with A. Then the

—
.,— —

moment~ along

also

~, which may be v&itten QN has the value “ -
--.=

G-h= K,P V cos a+ DP V sin a. Similarly, along ~
G,= Cp V sin a; and, perpendicular to the plane of ~,

Gu=EpVSin a

YA=T’COS a,
-.

V,==l?-sins
Vu=o

--

Consequently the kinetic energy of the flow, which equals one-half the scalar product of the
momentum and the velocity, is given by the equation — —.

lJnder these circumstances the moment acting on the body around an axis perpendicular to the
plane of X and ~ is --

M=~=j F’ ((C– K,) Sin ~a+ D COS~a)

But if a= O, M= O, since ~ is a line of equilibrium therefore D =0. Consequently, when the
body is moving in a direction E at right anglas to ~—a line of equilibrium, there is~ com orient

%of momentum Cp V along ~ and a component Ep V perpendicular to the plane of A and , but
none parallel b ~. If the body is now rotated about the line ~, thro~ch 180°, and again set ~
movin&along ~ with a velocity v, the momentum wjll have a component of momentum C~V
along B, and a oomponent-l?p V perpendicular to the plane z and ~. Therefore, as the body
is rota_W about ~ as an asis, there must be some dtite orientation euoh that, for a velocity
alo~m B, the component of momentum perpendicular to the piane of ~ and ~ is zero. For this
orientation, then, the mom&t~ is entirely along ~. Therefore, the present Iocation”of ~ and ~
with reference to the body are what may be called “ a~es of equilibrium.” They are at right
angles to each other. SimiIarly, it will be possible to find a third axis of equilibrium which is
perpendictiar to the other two. Every body possesses, therafore, three mutualIy perpendicular
axes of equilibrium, and, in g~eral, no more. Let the apparent additional masses with reference
to these three axes be called K,P, lQ, &; that is, if l?,, ~,, V, are the components of ~with
reference to these same axes, the flow momenta parallel to. these axes are ZIP VI, &p ~n @Vs.
Consequently the kinetic energy of the flow is

T=~p (K, V/+& V:+& Tab..--.. -.-.-------..-------(5)

The moment acting upon the body is determined by the equations previously given. If
the line of velocity is in a plme including two axes of equilibrium, the equations are specially
simple. Let the velocity make the angle a with the axis 1; then

G1=K,p VCOS a; G,= K@Tsin a; GZ=O.

—

. . .

.

.—

The component perpendicular to V is
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and therefore the moment =5 P (~ L KJ sin ga. This is about an axis perpendicular “to the

plane of 1 and g and is clockwise. (Of course, if ~< K,, it is actual counterclockwise.)

v /1

2‘4
Fm.3

& stated above, the three “principal” momenta of the flow are Klp ~’1, K2PJ73, IQ V$,

where Vl, Va, Va are the components of the velocity ~ But ~ the” loc~ized vector is formed
which represents KIPVI, i. e., the resultant of the parallel vectom representing the components
of the momentum aIong this axis of each individual particle of the fluid; and similarly the
localized vectors representing &p V, and K@ V,, it will be found that, in general, these three.
locaIized veotors do not pass through a common point. Therefore they can not be compounded
to form a single localized vector, and we can not in general speak of “ the momentum” of the
flow. If, however, the mowing body is one of revolution, or if it has three mutually perpendicular
planes of symmetry, then there is a point common to the three lines of action of the principal
momenta, and it is crdled the ‘(aerodynamic center.” In this case we may speak of “the flow-
momentum” G, and our previoue formulfi for moments and kinetic energy may be written

~=@. ~ . . . . ..-.. -.------ . ..--. -----------–(6)

T=;(m) ----. --.-------_-_-----------_--(7)

MOMENTS AND FORCES ACTING ON AIESHIPS

AiI@s may often be considered as having surfaces of revolution described by rotation
about the longitudinal axis. The central portion of an airshi~ mav be considered as a circular

FIO.4

cyhnder, and therefo~e, from what has Keen ~roved for circular cylinders,
the transverse apparent mass of the airship equals the maw of the fluid
displaced, approximately. The longitudinal mass is small, because in
longitudinal motion of the airship the air displaced by the bow escapes
transversely on the whole and the air flowing in at the stern also flows in
transversely, so that the momentum of the air in the direction of motion is
small. On the other hand, when the airship movws transversely, the air in
a transverse layer perpendicular to the longitudinal axis remains in the
layer, so that the flow is a two-dimensional one about a circle. This is true
near the central portion of the airship and approximately so elsewhere.
Call the longitudinal apparent mass K,P, the transve~e amarent mass &.

LE=-th~ airship rn&e in a strai~ht line with a ve~o~ity V having an
angle of yaw (or pitch) p, The longitudinal momentum = V CQSp. Klp;

the transverse momentum = V sin p. ~P; hence the ‘component perpendicular to the line of

V is ~ V (&– IQ sin 29, and the moment acting on the airship is

(8)M=~V: (~–~1) sin2’p ----- ----- -+----- ------ ------

.
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about an axis perpendicular to the plane inchding ~ and the longitudinal asis and is of such a
4’sense” ss to increase P. It is therefore called the “unstable” moment.

Let the airship move in a horizontal circle of radius r, with a velocity ~ and at an angle of
—

yaw q. CaU the” apparent moment of inertia” about a transvae axis through the aerodynamic
center K’P. The longitudinal velocity is V cos q; the transverse mlocity is ~ sin Q; and the

.
.-.

anadar velocity is ~. Therefore, the longitudinal momentum is @V cos p; the transieme —.

momentum is .&P V sin p, and the angular momentum, which remains constant, is K’P ~.

Since the aerodynamic center moves in a circle, the resultant force acting on the fluid must
always pass through the center of this circle. During the motion the two components of mornen-

-.

turn remain constant in mnount but their directions rotate with the anbgular velocity ~. If

a vector representi~~ momentum Q rotates with an angular velocity w, a force Gu must be - .

.
I

FIO.6

acting perpendicular to the line of G. Therefore there must be acting on the fluid ([) a tram:

verse force ~1, opposite in direction to the transverse momentum, equal to &P V cos P” ;?

(2) a longitudimd force ~,, in the same direction as the longitudinal momentum, equal to &P~
v

sinq. ~” The moment of these forties about an axis through the aerodynamic center, perpen-

dicular to the plane of the motion is (~ – K,) ~ P sin 2P. This moment, acting on the fluid,

is clockwise (in the &a&g); therefore the moment acting. on the airship is counterclochmk.e,
tending to increase p. (There is also a “ negative drag.”)

This moment is the same in amount as that found for the airship in straight tlight with
the same angle of yaw; but the distribution of forces along the airship is different in the two
cases, as will now be shown by making a closer ~~YSiS of the two flOWS.

Consider an airship flying in a straight line with velocity T, and with an angle of pitch q
downward. In a stationary transverse plane perpendicular to the axis, and therefore approxi-
mately vertical, the flow may be regarded as two-dimensional, as explained before. The air-
ship displaces a circle, which changes its size as the ship advances and also its position, owing
to the pitch. “The apparent mass of the two-dimensional flow in a layer of thickness dir, if S
is the area of the cirole, is pS h, since the apparent transverse mass of a circular cylinder, if
the flow is two-dimensional, is known to be equal to the mass of the fluid displaced. The trans-
verse velocity is V sin p, and therefore the transverse momentum upward (in the drawing)

. —

..:- -

—.

—

.

.

.

.—-.
.—
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in the layer is pfl V sin q dz. The rate of change of this is p V sin p . dz . ~. But

dS_dSdx
-.

—=+ Vcog &z–% (it

Hence atany element of length dz there is a transverse force downward on the airship, given

This force is in opposite directions at-the two ends, and produces the unstable moment,
Now consider the airship flying &th constantivglocity V~-and” ~li of yaw ~~ in a circle

—.

by

of radius r, The transverse momentum of a layer of thickness dx, outward, away from the
circle, is, as before, p$v dx, where v is the tranav~e velocity, This now variw with the time.
So the rate of change of this outward momentum is

v is made up of two

z is measured along

+:+v%”

terms V sin p, due to the translation, and ~ z, due to the rotation, where

the axis from the aerodynamic center. Hence

dv dv dx V diS ds
&=~~=#7cos P;~=#cosp.

Thus the rate of change of the transverse fluid momentum outward is

p d

7
pdx(S~”cos p+V~~sin w COS-Q+~Z cm w fi

.

. ( l~scosp+v~V’;sin%g+v ~ 9—ax---------------‘~cos@xdz (9)

Therefore this gives the transverse force inward, towmd the inside of the circle, on an element
of length dz of the. airship.

The first of the three terms is the same ss found for the case of straightiflight. The last

‘(2S) & arid the resultant moment due to this forcetwo terms combine to form Vz ~ cos p ~ ,

vanishes. The distribution of these three forces is shown in the accompanying figure.
In discussions of apparent mmsw it is customary to introduce three constants, defined as

follows :
K,=l volume; K,az volume; K’*’J where J iS the moment of inertia of the volume

when occupied by matter cd density one.
In deducing the transverse forces on an actual a&~P, it is not correct to tisume that the

transverse flow is two-dimensional, Wpecidly nem. the ends, A fairly satisfactory formda
may be obtained by multiplying each of the three terms in the approximate formula by a defi-
nite factor, depending upon the shape of the airship. Munk adduces reasons for multiplying
the first term by k2:11 and the other two by k’, (h “this discussion there is omitted the trans-
verse component of the centrifug~ force produced by the air which is flowi~ longitudhmlly
and gives rim to the longitudinal mass. It is very small.)

What has been said above applies to airships without fins, One function of the fins is to
counterbalance the unstable moment. If&’ is the efftitivti--tiei-of a pair of fis and b the total
span, the lift exerted on thenq as proved in a later section, is \
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where q is the angle of attack measured in radians. If the mean distance of the fins from the
center of the airship is written a, then, for the lift to bahnce the unstab~e moment,

Lu= (&–kl) -volume. ~ V 2P, since y issmall.

Hence the area of the fins

1+$~ - (k, –k,). volume
a T

I t

(.-.ij ~V’$sinZp

.hv7e us n sfr+bf ti@f moi3- #&

z, 1

HHH_ly--

k’v”gcosps
M+afiwe cenfrifLqc$fmce

—

FIG.&-D&mm showing tha dkectfon of HIS tmnsversa atr forces aoting on an sdrsldp flyhg In s torn.Thethrsatmm mmtohoadded
togethsz

If the ship is flying in a circle of radius ~, not simply must the sir force on the h-balance
the unstable moment, but it must produce the force required to make the airship move in a

p
circle, i.e., p . volume . ~. This cm therefore be equated to the unstable moment divided by a

.-

and hence

~ (k, –k,) . volume. $ V%?p
p . volume . ~=

“a
or

P=T*

—.

—

—

--

--

—. —

—

and this value may be substituted ,in the formulas giving the distribution of the trrmsve~e
forces.

*26t4



104 REPORT NATIONALADVISORYCOMMI~E. FOB .~ONAPCS ,---

DI&3TR1BUTIONOF PRESSURE OVER THE ENVELOPE OF AN AIRSHIP

It isproved in Lamb’s Hydrodynamics, Chapter V, that, if an ellipsoid is moving through
a fluid with constant velocity U, parallel to a principal axis, which may be called the x-mis,
the velocity potential of the flow at any point of its surface is

- ~=AUz

where A is a constant for a given ellipsoid.
This constant A maybe expressed in tcmns of the apparent mass of the ellipsoid for motion

parfillel to the z-sxi~. The kinetic energy of the flow is

T= – ~ pf q $ dS over tb ellipsoid.

‘q dS may obviously be replnced by U dy da
G

Therefore

T= –$ p~A U% dy dz = –$ U2AJX dy dz= AS UZA . volume-of ellipsoid. “

But by the definition of apparent mass

T=$ U%, . volume .

Hence
A = -k,, and p= -klUz

Similarly, if the motion of the ellipsoid is oblique, so that its velocity has tho components
U, V, W with reference to its principal axesj the velocity potentiaI at any point of the surfnco is

w= -kluz–k,vy–k;lrz ---------------------- .-.. --(10)

the origin of coordinates being nt the center of the ellipsoid.
The values of the k’s are given by certain definite integrals. If a, b, c me tho scrniaxcs

of the ellipsoid,

s

‘- dp
z == where a=aifc

‘1 Z’-a .W(a’+p)d(a’+p) (J?+p) (d+~
,.. r.-. -

. . .. ...— .-

“ ‘2+’ ‘tc.
For sn ellipsoid of revolution

b=c, k,agtk, =k,
2

The following table gives values of k~ and k, for different=longation ratios of an ellipsoid
of revolution.

1 I 1 i 1“” .-= . ..-
. . ,:kl

(dk%%a) ‘= kj:h(tranikno)~~ I (rotilon)

.

——....+

.

.
-
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SimiIarIy, if the eIlipsoid is stationary in a stream of air whose relocity has the components
U, ~, W’,the velocity potential at any point on the surface is

p= A’uz+B’vy+ aT2. --...--.-._-----.---_-----.(n)

where
A’=l–A=kl+l, B’=%a+l, C=?++l,

and are therefore known quantities for a given ellipsoid. Further, the velocity of flow at any
point on the surface is along the surface; and points of oonstant potential ~e on parallel ellipses,
intersections of the elhpsoid by the family of planes p= C.

Consider the intersection of the surface of the ellipsoid by the plane P=A’ 27x+ B’ Vy +
C’ Wz = 0. At these points the gradient of P is along the surface; hence the velocity of flow has
the components ~’~,B’7, C’ IT. At any other point on the surface, the direction of the gradient
is not along the surface; and, if M is the constant perpendicular distance between any two planes
whose potentials have a constant difference and if b is the shortest distance along the surface
between the eLlipses in which these planes cut the surface, AZ= ti at the first one of the points
referred to above, while at any other point Ah = AScos ~,where Eis the angle between the no~als
to the surface at the two points. Consequently the ~elocity of flow has its maximum at the
points first described; and, calling this Vm=, the maggtude of the wlocity at any other point
of the surface is Vm=zcos e.

For the case of an ellipsoid of revolution the velocity at an-y point on the surface may
be found by simple geometry, as follows. Call the plane through the line of general flow and
the axis of revolution of the ellipsoid the X–Y phm-in order to have a simpIe mode of descrip-
tion. Then the transve~ axis of the ellipsoid which lies in this plane is the only one which need
be considered. The components of the velocity of the generaI flow are U, F, O; hence the
maximum velocity has the components A’ V, B’ V, 0. Let a, B, y be the direction cosines of
the normal to the surface at any point. At a point on the surface where the velocity of flow k
a masirnum draw a line parallel to this normal, and call the component of v~az along it VIand that
perpendicular to it v,. Vzis, from what has been said before, equal to the velocity of the flow at
the point where the normal was originally drawn. But

—

—.

—
..- —

Then, by Bernouilli’s theorem, viz, p + ~ pV2’=constantj the p~ure may be calculated.

‘With a very elongated ellipsoid, k, is small and ii, nearly equals 1. Hence A’ = 1 and B’ =9, so
the components of maximum velocity are U and 2 V. C!onsequentIy, whale the angle of attack

is defined by tan a =~s the direction of maximum flow m~kes an angle p with the longitudinal .—.

2?+axis,where tan P=VS Therefore P is about twice a.

CONCLUSION

Considering an airship as an ellipsoid of revolution of known Tohune and elongation ratio,
so that kl, 7C2,and k’ (and also El and Q are known,

1. The unstable moment, for an angle of yaw p, in straight or circling flight, is
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2, The tiansverae force per unit length is, where ~ is the cross section ah point z,
(a) For straight flight,

“’ti
(k,–k,) ;F sin~p . ~

(b) For circling &ght

dS CLs(7C2-7CJ; ‘v’ “ sin%l~ +7C’V ; 8 Cos p+k’v’ : Cos fpx~

3. The pressure over the envelope is given by the formula

~=c–;p~”

where, if Z7and 17 are the components of flight velocity with respect to the longitudinal and
transverse axes,

W= (kl +1)’ U’ +(liz +1)’V’– ((k, +i’) Ua+(7c, +1) T o #)’

a and @being the direction cosines of the normal to the @ace at-the point at which the prwmre
is to be calculated. -.

PROBLEMS MORE SPECIALLY CONCERNING AIRFOLLS AND AIRPLANES

INTRODUCTION

In outlining a theory of an airphme wing it is necessary to show how, assuming certain
constructional data, it is powible to calculate, among other things, the lift, the drag due to other——.
causes than viscosity, the pitching moment, and the rolling moment. In the simplest type of
wing, that whose chord section is a straight line, flying at a definite angle of attack, the values
of the lift and the pitching moment can be calculated ~mmediately. They are seen to depend
upon the transverse velocity of the air flow perpendicular to the chord. Similarly, in discussing
the properties of a wing whose section is a curved line, if the distribution of the transverse
velocity at the points of the chord is known, the lift and pitching moment may be calculated,
as will be shown. So.the fit essential step in the theory of the wing is to discuss mathematical
methods of representing arbitrary distributions .of transverse velocity over the chord, and to
deduce the nature of the consequent flow. It will be shown how the distribution of velocity
may be so exprwsed.as to lead to formulas for the lift m~. pitching moment in terms of quanti-
ties known to the designer.

In all this discussion an essential element is the apgle of attack; but-it is evident that the
geometrical angle of attack is not the effective one, owing to the fact that-the direction of the

,relative wind is affected by the presence .of the wing. Owing h this motivation of the air flow,
there is a drag introduced, known as the “induced dra.gj” and the effective angle of attack is the
geometrical one diminished by what is called the “induced” angle of attack. The problem is
to calculate these and then their effect ,,upon the lift. one method of approach to the problem
is to assume as known the distribution of lift-along the span, but another and better one is to
assume as known the angle of attack at all pointe along the span and to apply the general method
to wings having particular plane forms, It will be seen that all these methods lead back to the
discussion of the distribution of the transverse down-w.~h velocity along the span.

If an airfoil has an infinite span, the flow around it when the air stream is perpendicular to
its span may be regarded as twcedimensional. The air particles in a longitudinal plane, i. e.,
one including the line of flow of the air strea.numd perpendicular to the span, remain in the plane.
Further, if an airfoil of finite span is advancing into a transverse vertical layer of air, it imparts
to the air velocity in this plane, so that again one can consider this transverse flow as being two-
dimensional about a plane figure which is the projection of the airfoil on this transverse plane.
The simplest case of motion in the longitudinal plane is to consider the longitudinal section of
the airfoil to be a straight line of a length equal to the chord, and the simpleslmase of motion
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in the transverse plane is to consider the front aspect of m airfoil to be a straight line of a length
equal to the span.

The importance of two-dimensional flows requires a brief statement of the properties of
conjugate functions which are so useful in all tvm-dimensional problems. All the cases of flow
to be discussed will be those described by a velocity potential, which then satisfies the equation

Writhg Z=z+iy, if

ZYfp a%
5F+3i7=0

~=f (z) =P (x, @ +iQ (Z, y),

P and Q are calIed conjugate functions, because M F’ is any analytic function

to that both P end Q satisfy the fundamental equation for the velocity potential, and, further
shat

dF bP . bP
Z“z–%%

Consequently, if P is chosen as the velocity potential P, i. e., if p is the real part of F’, them the

dF
real part of ~ gives the component of the velocity at any po~t in the direetion of the x-axis,

and the imaginary part of #gives the component of the velocity, at any point, in the negative

direotion of the y-axis. Therefore the whole motion is defined by the knowkdge of F’ as a
unction of the sin@e variable z.

~LUSTRATIONSOF TWO-DIMENSIONALPLOW

1. Let

F=i~ (z–il~ .--- .----_ .–---------------- (13)
Then

There are ewidently two singular points z= &l, i. e., x=1, y=O and x= –1, y=O; and at

dF’
infinity ~ = O

Along the line joining the two singular points (– 1, O) and (+1, 0), y= O; henco

r’)F’= ‘Z —
o= T&+iv

.—

.-

.—

in which the upper signs apply to points on the positive side of the line (i. e., where y is positive),
and conversely. Hence, for points on the Line

% ==+VJI—Z: - ----------------- ------------(15)
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Further, tho longitudinal velocity, i, e., the velocity along the z-axis, is

– rxcl
‘“=*41–X2

— -------:---------------------.-(16)

and the transverse velocity downward is

Uo=v----------------------- _---- . . ..--- (l7)

The general function ~, which was assumed to begin with, represen~, therefore, the two-
dimensional flow around a straight line of length f!,mov@ transversely downward with a velocity
1? (Or, the general flow about a lamina, infinite in Lmgth and a width !?, moving transversely
with velocity 17.)

Near the positive end of the line, i. e., when XO= 1– q e being a smaH quantity, v = ~$=~

and therefore v beoomes infinite on both sides of the line, but is “outward’) on the ~owcr side
and inward on the upper.

It should be noted tlmt in defining a function F which ~eads to a value PO= + V/1 – xO~, ““”” ““”
—..

the d~fwence qf potential between two points on opposite sidm of the line is ~ J7V11– X02. This -
— ,,- .. - .

is at once evident if polar coordinates are used. In that case, writing z= cos 6, where 6 is a
complex number,

~=i~e-rd= ~(sin~+i cos8)---------------------.--(I3a)
,.

~,=dF dFed8 V@J

Z=T” %
---=–& (Cos ~–i Sins) . . .-.-------- ..(14Q)~~ a

13’orpoints on the line ZO= cos & where &is real, and

qo=vsin a. --------- -------- -------- ------- (15a)

hence at
v

(18)~“=~’~’@@’= -(sin 60)o----------------------------

As z. goes from +1 to – 1 on the upper side of the line 6 increased from O to r; and, as the point
returns on iho lower side of the line, 6 increases from T to%. (The flow is shown in the Figure 7.)

\ /

F1o.7.–Trsm’er6eflow.pm~ucedbyn movingstmiehtHM

.
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If the I.ine has the length b, stretching from
(-$’”) ’O(+:’O)’wemay*@ -

Y “+(93------------------------’’3F=iVg ~ z–t

Then

Thus

,“

T+

“=-,~ +iv.. ---------------____ ------(lo’)

c.= *V1 ~/l-(; ro}.:--------_--_ --------. ---(ii)-

~~uO=~------ _--) ---------------- (lG’)

“’o-l::’.)

93

Or, using polsr coordinates, writing ~ 2= 00s &

F=iv:e-~6= v;(tia+i c@a)--------_--------.. -.. (l3'a)

F’ =–~+(cm 3–i sin ~).--------- –------------- (l~’u)

bf#o=vpin80 ---------- ------ -------- ------ (I5’1L)

~,.- _ T-Cos 8.
Sh *O J Uo= v

and
v

t’~oe= —~sh ~o)a------------------------------- (1s’)

lt has been pro-red that the tinetic enagy of the flow is

integrated over the moving body, where dn is the normal away from the body. lN the cme o
the line of length b, moving transve~ely vzith velocity V

“’=*’WT7(3.”’’”’”-’
Hence, integgntirig over both sides,

or writing
~

Cos 80= ~ xlJ

—

. .—

.—
.

--

—

..
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()But r ~ z is the area of a circle described about the line of length ~ as n diameter. Tho

apparent transverse mass per unit length, then, of a lamina in.finite in length and of width b is

()
pir ~ ‘~ the same as for a circular cylinder of diameter 6 moving transversely.

2. A second function, suggested by the first, is

F=iAn e-~’d=An (sin n6+i cos nti) ..--... ---.. --... ---- ..(20)

where z = cos &

Therefore

Hence

F'=-An:;i;= &A. n;:*~~+d. n::*n8.. -:---.- L-i---. -_-z(2l)"

pO==A. sin m$o[for points on the line joining (–1, O) and (+1, 0)] --------- (22)

n cos n&
VO= —A% ,.. (23)-—-. -------- ------- . --------- -.--.---

Sin a.

n sin m!.
uO=A~ ------ ------------ ------ ---- ---_(24)

sm 60

Note that U. is no longer the same for aIl poinb of the line.

For a Line of length 7),stretching from
(-:’”) ’o(+$’o)wemaytiti,H ‘etiht’]e

same expressions for WOand UOas just found,

\
~=~fl ~ (sin n~+i cos rid), where cos d=~z-. -.-.-.----------(20’)

Therefore _.. . . . -—._. —..

F’=-Afl ‘:nsan8+iA%n::~n~ ,-~-. -:-: ---: (21-.., --:(21’)

b
Qo=An~ sinndo ---. ---------- .------. .--- .. --(22’)

A
n 00s n~o~?o= — * ---------- -: ---- --.--- -: :--- ---- (23’)

sm 80

and
n sin ndo 1!

U..= A% ~where Z xo=cosl30-------
sin &

------- -p ----- - (24’)

In the formula, therefore, for the kinetic energy of the. flow

=Am~
dp

Qo
()

n sin nc?d
sin n80; ~ = -Am

0 sin 60

and

bds= dxo_ ——-sin80d~op
2

and
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The impulse per unit length required to create the hw is –PP.; hence the total impulse is

- Pf POb, taken over both sides of the line, i. e.,

P=p
s

~1

()
‘.& : sin tio .: sin aodao= pr ~ ~4,

o

J

r
since sinnO. ein9..d6=Ou&s.sn=l .

3. A more general case would then be a superposition of flows like the one kst considered,
described by

F’=i{~l(2-i~l-2?)+~ (z–i~~jz+etc.} .-... ----.-------(26)

where it is assumed that it is possible to so ohoose the coefficients as to make the series involved
convergent. Obviously, then, for points on the line oonnectirg (– 1, O) and (+1, O),

,

Pd=AI Sk ~~+~ sin ~%-tetc.j where cos 80=z0 ---- -_ ----------- (27)

{

Al COS~o+g.~ COS%0Vou —
sin 80 sin 60 I

+etc. -------_ -_--------_----(28)

~o=A1 sin ~o+ ~A, sin 260
sin 60 ~~o +etc---_____ -------_____ -----(29)

For a line of length b, i. e., making c.os & =; XO

qo=~(A1sin &+ Azsin%50+etc.) .--. -----___ -----------(27’)

if V. and UOare to have the same forms as before.
In the formula for the kinetic energy, then,

=— =ob‘(~:+~A:+. ..0

A .l----------_-------------(3o)

Therefore, not simply axe the kinematic properties of the separate flows additive, but the
energies also.

The constants in the formula for F may be determined by various physical specifications:
a. Imt the distribution of potential be known at aIl points of the line between (– 1, 0) and

(+1, 0), the function having equal and opposite values at opposite points.
Then it is possible to so &oose coefficients that POmaybe expressed as follows:

%= Al Sin & + AZ Sin I%.+ etc.

for, on multiplying both sides of the equation by sin n~o and integrating from O to T,

J

r
y.. sin nt@o =

s s
r (A1 ein 60+A, sin %.+..] sin n~o. d60= ‘.4fi sin’ n30d60=~A%

o 0

Hence ‘

J
.4%=: o=qOsinn&d60-- -------- --___--------------(3l)

and is therefore determined. These dues of the A’s may then be substituted in the general
function F. @or a line of length 6,

.—

.-

--

-—- -

..—

in formula 27’, etc.)
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(A better mode of expression would be to specify that the

AERONAUTICS
-. —.

.-

differenco of potentitil betwccm

opposite points is known for each point of the line, i. e., Ap is specified, Then expand ~ Ap in

a series Al sin 60+ ii~ sin ,?60+ etc.)
b. Let the distribution of longitudinal velocity be specified at each point of the line of

length ,2, being equal and opposite at opposite points.
we may then consider VOsin 60 as known at each point, rind this can be tzxpandcd into a

series
00 sin ~.= - (A, cos 30+l?~, cos $’60+ etc.)

if the .4’s are given proper values, viz, since

J

r
VOsin 60.cos rdo d80= —

J -J
“ mln COS2n80d& = –~ nA%,AN= –~ ‘v. sin do.cos Z80dfio.-(3z)

o 0 n7r ~

rmd these values may be substituted in the function ~ in order to determine the flow at all
points.

(These same values for the -4’s are to be used in the formulas fo; a line of length 5.)
c. Let the transverse velocity be specified at each point of the line, ha-ring the same value ,

at opposite points. Then u. sin & is known for each point, and this may be expanded into Q
series

U. sin & = Al sin 60+,942 sin 260+ etc.

by giving the coefficients proper values, viz, since

J

r

s

a-
U. sin 130.sin n& d80=

J
2?”n.~n sinz n60dc$o=~ n.1~, .4n=—

0
u. sin ~O.sin fi60dtlo.. - (33)

0 m o

These values may be substituted in ~, etc. (These same va;ues for the .4’s me to be used in the
formuIas for a line of length b.)

The essential thing is that, if specification a, b, or c is made, the flow at all points in space
may be deduced,

4. Iff (z) is a flow function and contains a parameter Zo, then f (z, zO)VOdzo is a!so a so~u-
tion of the equationa

is a solution, and

if u. is a function of Xo. Hence iilso ‘“ - ‘ - - -

sF= ‘1_,j(2, z.)uodz. -.-----. ---. --. -.. --_-.. --_-(34

SF’= ‘1_lfl(z, x.) u.dxo, ~~rherofl=~ --------------------- (35)

A value of ~ (z, x.) suggested by Munk is

#-{log (d’-e-f’*) -log (CM–CI’C)}-.------ .----.. -.----.(36)

where cos 8=Z and cos & = XO.

This solution F maybe interpreted physically by &ducing the meaning of each c?emcntary
term.

fs _L.sin & I =%1 1
4

1 – X,2-— — ---------.(37)r sln 8 cos 13-cos & Tz—xo ~_z, --------

where the rtegative sign is to be taken over the positive side of the line, and tho positive sign on
the other. There is evidently a singular point atz =TO. For poi~ts close to this-not neces-

11sarily on the line-. = F- —. Therefore an element of F’, that is, Y U. ho, when applied
Trz-xo

to these points, has the due

~~ 1 1 X–xo–iy
‘U. dXo=+#/o dxo —T z—x~ (X–xo)a+y ’

--
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If a small circle of radius r is drawn around the point XO,and the point z, y lies on it, F= (z –zOl’

+ ~. The velocity along the z-axis for points on the positive side of the line is– ~ UOdzO‘~,T

and the velocity alo~a the y-axis is – ~ IL.dzo$; hence there h a radi~ ~elo~ty in~ard

toward Xo,of the value
1 1
; Uo ho . ~. Therefore the total flovi per second in through the semi-

circle is puo dxo. Similarly there is an equal outward flow through the semicircle on the negative
side of the line.

This is equivalent, then, to there being a transverse -re!ocity U. at aIIpoints of the element
dxo, toward it on the positive side of the hne and a-iv?y from it- on the other. This gives the
physical meaning of u..

The tot al function

“=FS:=M=---38;-----
indicates the effect at a point z of ‘a given clistribution of transverse Te?ocity, UObe%a the do~-
vrard velocity at the point Zo, on both sides of the line. The longgtudimd velocity, due to th~
distribution, at a point z on the line is

d
——

s+1 1 U. dxo 1 _zo2

‘I)==F –-— —
-~ T Z—zo 1 –X2

Interchanging s-mbo!s, the ~elocity at a point Z. on the line is

“0=+=%s----------------;;--------(3
where u is the trmwcrse velocity downward at the point x.

For a point near the positive edge, wite XO=1 –e where ~ is small. Then since

sin 60= ~~= 16.
1 Sd+1t’e@e=— u gzdz---.. --_---------. --.. (40)r (sin 6.)*4 –I

The flow, due to a single clement, is hewn in Figure&

Fro.5.—F1owaround a stmIght Imc creekd by one ekmcnt of the win~ srei on

If the line has the length b stretch@ between

(-wnd(+w’e’
J

F= _: f (2, XJ u. dro

where

f=: {log (ex –e-u”) –log (eY– d’.) }

.

——

,...-= .-L

-

——

-.

—

2
and cos fi=T z and cos 8.= ; Xo. This Ieads to a trans~e~o downward velocity U. at x., etc.
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‘d‘*= – y ‘H(sin 60)a.-. -b/s u -&c ---------- -.--. _-(40’)
I–; x

Two expressions have been deduced, therefore, for the flow due to an arbitrary distribution
of transve~e velocity over a line of length b:

1. P=: (~lsin ~+~a sin g~+etc.)

in which

s
An=; r U. sin 60. sin n60. d~o

*
2

where cm 8= ~ ~ and UOis the transveme velocity downward at the point To.

2. KJis the real part of

F=
J

:f (%

in which

●

xc) ‘l&ho

.-

f (z, 2.) =:{ log (da - e-~a”)– log (e~a—e~a”)}

These are, of course, mathematically identical.
5. A flow of a different kind entirely is given by

F= Aosin–lz ---- ----------------------------.(41)
This makw

_ .F’=+4f~&#a, ~hwecos 8-z-.-----------.-------(42)

rmd
A

v~——+ ---=- .---.--
sin 6 -= ----- -------- -------- -- (43)

Therefore for pointe on the line between ( –I, 0) and (+ ~, 0), U= O on both sides of the line and
v is positive on the upper side and negative on the other. The flow is as indicated,

FKG.9.–Clscuiation flow around P.strdght Une

F is a multiple valued function, its -modulus be~m ,%AD. For pointi on tho he y= 0,
beyond z= – 1 and X= + I, P=AO sin-’ Z; Comequent]y there iS a difference of potential %A.
between two points lying on opposite sid~ of the ~e, since ea~l line of flow incloses the origin.
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This flow can not be produced by impulsive pressures over the line between z= – 1 and
z = +1, beeause the flow is everywhere para’IIel to the surface. It can be imagined produced
by impulses over all points of the line y= O, deriding from one end of the line of length 2?,out
to infhity. At all points there is a potential difference %rAo; hence the downward impulse per
unit length of the line required to generate the motion is 2?rAN. But if the line of length %
be considered an &plane wing, and if it moves with a velocity ~ longitudinally, it must
deliver to the air per second a momentum downward equal to the lift on the wing, L. There-
fore since this momentum is imparted in going a distance ~, the momentum imparted per

unit length, i. e., the impulse per unit length, is ~. Hence

L
~=%rAOP s ● ● (Kutta’s theorem) ------ ----- ----- ----- --- (44)

and, from (43)
Lv@e = grp~ (sin 50)6. -0 ------ ----+- ------ -- ”------- (45)

For a line of length b, stretcmm from
(-:’ ~)to(+:’o)fite ,

Hence
()‘=A” ‘h-’ :2 ‘- ------– --------------------(41’)

A.:
— —=—

“=’+::’)

2?
_-_------ .--(42’)

2 sin6-------------

As before,

and therefore
1? L

.l)&e= J STPV sin L$o)a*-=Ll-- -------------------------- (45’j

In these form&s ~ is the lift per unit kngth along the inhite span, since the problem is treated
as a two-dimensional one.

A~QLEOF ATTACKAh~ UFT WmG SECTIONTHEORY

In discuss~~ suitable combinations of types of flow for application to airplane wings,
it is essential to include a circulation flow so as to secure lift, and also so to choose the types
that the total flow divides exactly at the trailing edge. The condition for the latter is thai
VM, = O. (IKutta was the first to state this mrdtion.)

A.STRAIGHT IJNE,ANGLE OF ATTACK a

In order to introduce the angle of attack, consider the problem of the straight line of length
9 moving with a velocity V in a direction mak@ the angle a with the line. The transveme
velocity is V sin a, and hence the flow is given by (13a) as

.—

-.—

.-.

-.

—

-—

..—

F= Vsina.i. e–fs ----------------------------- (46)
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and the longitudinal velocity atthe
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trailing edge is, b~ (18),

1
(47)-vsin LY----- -’------- ------- -------- --

—

Since a is small, F can aIso be taken as the flow function for a line inclined to the axis of z by an
~gle ~ having a velocity 1?in the direction of the axis, v and u now referring to the line of flight.

(This approximation was proposed and used by Munk.)

v

Fm. 10

Due to a circulation flow around the line of length 2, given by ~= .40 sin-’ z, the longitudinal
edge velocity is, from (45),

Hence, if ve~o,=0 due to the two flows,

L
27

=Vsina

or
L=2rPVsh a-------_-.--------..-.--.....--(M)

Introducing the area, 5’=2 since the span is one, and, writing a in place of sin a,

.L=%T~T72Su. -.---- .-. --------- .----. --.. --(48a)

giving a lift coefEcient
Gl=gra -

If the line has a length b, the two edge velocities are, by (18’) and (45’),

and ,9 L 1
-~7sin”& z $? ‘-O

—.. —

Hence

(48’)L=%rpF$sincL-_ . . . . . . . ..- ---------- ------

But S =3, and therefore, as before,
.—

L=$r; TnSa. ------ ..----- .--. --. -.----- ..(48’a)
.

B.CURVED Lm& ZERO ANGLE OF ATTACK; uhPPARENT*’ANGLE OF ATTACK’

+—
-1 0 +1

Flo. 11

. .

If the wing is a thin cambered one, it is equivalent to a good approximation, to a curve
which is the mean of the upper nnd lower curves of. the wing section. Consider, then, the

problem of the motion of such a curved line whose chord is the z-axis, having a velocity ~ in
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the negative direc~on of&e chord. Ix3t ~ be the ordinate of the curve at the point z. i!my

‘t Therefore, atelement of the curve is then moving with the angle of attRck whose tangent is – ~S

this element the component of ~ downward (i. e., as shown above, ~ sin ~ or Va) is – ~~ifthe

curvature is small. This is to be substituted in the formula previously deduced for the case
of a variable transverse velocity along the chord, viz, for a chord of length 2, from (40),

This leads to a detition of the” mean apparent angle of attack, ” viz, the angle of attack which
a straight li~e having a chord of equal length would have to possess in order to give this same
-ralue of edge -reIocity and therefore the same lift. ~alIing this angle a’, the condition, then, is,
from (47),

–Fsina’
1 v

J /–
+1 & l+zdz

GTG= T (sm 60)J,-0 –1 ZJG
Hence

.
since forx=l, C=O.

For a line of length b, the angle of attack of each element and the component of velocity
downward are as before and, from (40’),

Hence

Since for any given wing section $ is specified M a f (z),theseintegralsmay be evaluated and
ap may be calculated.

CONCLUSION

Considering the wing as one of inhite. span, the lift on a cambered wing of chord c and area
S, when at zero angle of attack, is

where
$ 21

, ()
“1= ; –

r, ‘::(+)7’-W

.

— —.

-----

.
.-

.—

In this formula ~ is the- ordinate from the chord to the mean curve of the upper and lower sur-
faces of the wing section.

(For simple methods of calculating a’ from ring profiles, see N. ~. C. .$. Technical Note,
122.)
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PITCHING MOMENT AND CENTER OF’PRESSURE

In the case of a straight line of length 2 movirg with a velocity V’atmn angle of attack a
the moment acting on it due k the air forces maybe calculated at once from the general theorem
already proved, viz: The moment equals the product of the velocity and the component,
perpendicular to the velocity, of the momentum of the air flow. Such a line has a transverse

\

vu-—-—_ ———

\

FIQ.12

mass Tp, and hence a momentum, perpendicular to the line, of Tp. V sin a. Its component
perpendicular to the line of V is then mp V sin a.cos a; and therefore the pitching moment
(clockwise), for unit span, is

lf=vpn%i ----- ------ ------ ------ --.--- -- (51)

or

=2T ; v-a

since a is small.
The lift was found, (48), to have the value, for a wing of unit span,

Hence the distance of the “center of pressure” from the center of the line ia

$=j -, ---------- .-”------ -------- -------- -- (52)

It is therefore independent of a and is 25~o tithe length of the chord from the leading edge.

For a line of length 6 the transverse mass is r
()

~ ‘p, and hence

629’%- -0‘=*” ,9 ~ - -.--. --... ---.--------.--(519

Further, from (48’),

L=2r~PPa;
. .

Hence
Mlb
~=$2ii -------- .. ----- ------- -------- -. (52’)

i. e., the center of pressure is ‘(at 25~o”, and is independent of a.
In the case of a curved line, in order to deduce the center of pressure, it is newasary to

calcndate the distribution of pressure over the line. By Bernouilli’s theorem the pressure at any

p elocity)z where 0 is a constant.point equaIs 0–- ~ (v The genemd formula for the longitudinal —

velocity k, (see (28))

( cm 80
Vo=— Al

sm+~A’*+ ”’”)
—. —

Thismay be aprdied to any element of the curve, and is the vekwity of the flow toward the right;
but since the curved line itself has a velocity V toward the left, the relative velocity between the
air and the wing is V4 WOor

(
Cos 80+*A Cos 980

v— Al ~ +aslnao “-” )
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In squaring this, the squares of the A’s maybe omitted, since in the integration given beIow the
corresponding terms would disappear. Hence

( Cos&
- +A4a

00s%io
+ ) (53)p=C–~ P+PT ~ sm 60

sn1130 ‘“” ‘ -----------------

The &at two terms are the same for all points on both sides of the line and therefore produce no
moment. The second term gives equsl and opposite mdues of p at two opposite points on the
hne, i. e., if it is a pressure on one side it W be a suction on the other; therefore, the pitching
moment (clockwise) for unit span,

where x = cos &

s
==~~p “ (~1 COS30+2A, COS~60+ . . .) 00S 60d60=~~P.~l;---..------(54)

o

But the value of ~, in terms of the transverse velocity was found prev_iously, (33), to be

J

~~”
1-= tko ShF 80aao.

In the case of an element of the curved Iine

ua=— v $--,

hence, for a wing of unit span, ‘

sw= –g?pP “$ sin’ 60fl$o

= –2PP “‘1 dl j= ~z
J -, &’l

= –2Pvjf_’ * ‘z .----------------------------(55)

For a straight line having the same chord and the angle of attack a, the pitching momcmt was
found to be

so that, in order for the straight line to have the same moment as the curved line at zero angIe
of attack, the angle of attack of the formsr must be given by

The lift of the straight line was found to be %pPa; hence the Iift of the curved line at
tmgle of attack zero is, for unit span,

L=%rpV’a’, or on substitution from (50),

s+1 :dx
= i?pv’ (57)

-1 (l–t)~l –z?---------------------------------
MS-26?A

—
.----

—

.-—
-.

. .

—

.-

. . .

—

.
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Hence the distance of the center of pressure from the. center of the chord is

s,

+1

H
‘~.. “dz

–1 ~1 —Xa—.—
T, c +1 idx “----- ice--: -”-------------=

- (58)

Writing this fraction equal to h, the position of the center of pressure is given by ~ %.

If the length of the chord is b, the moment per unit length of the sprm is obviously

..+. —...-

-. —

.-, ,,- .

;X”t
= –~pv’ ~ dz. -------------------.--.--(55’)

s-:~~

For a stmight line, ~y (51’), ~ -j

()‘=g=v’ ; ‘ % a“

. :X”( ‘.U=.: :2 :; ~<

() J dl-(ixYdx----------------”------(5fi’) ‘--”- ‘-

‘Therefore,

L =2vV ] a’, per unit length of span, or, from (50’),

Hence

.------- ------- ----
‘2PV2{ ::(‘f (4$4)”‘“”““ ‘--’---:’(5“-’-”-

+,p;Z’t

Mb
s_b,2J_$-xyd’

~=–”g +bfi a:--------------”---–w
dLB(,_+J+)”~-- ~- .... . ___

It follows at once-that the position of the center of pressure is given by

The caseof two or more wing sections, combined to form a biplane or multilane, when sur-
rounded by a two-dimensional flow in a longitudinal vertical plane may be treated in the same
way as a single section. Each section determines by its slope at each point a distribution of
vertical and horizontal veIocity. This distribution being known, the resultant moment can
be determined; from Kutta’s condition for the two trailing edges the lift can be deduced; and
finally the center of pressure may be calculated. The mathematical difficulties me, however,
gre8t.

.
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COIWLUSION

considering the wing as one of intinit e span, the pitching moment acting on a cambered
wing of chord c, per unit length of span, when at zero angle of attack, is

-.

where

and the ratio of the distance from the leading edge to the center of pr~ure to. the length of

the chord is 1+
.

For simple means of calcdation; see N. A. C. A. Technical Note No. 122. ”

INDCCED DRAG AND mmccm ANGLE OF ATTAm

A.lNiUCED DOWNW~

In what has gone before we have co~idered O~Y the two-dimensional flow in a vertical
longitudinal plane; but this is only part of the motion, for it pr~uppmes a wing of infiite
span. If one views a finite wing from the front it is evident that, for many purposes, one may -
consider again the problem as that of a two-dimemion~ flow about a straight line, this time
in a vertical transverse plane. The wing enters a stationary vertical layer of air and imparts
to it a certain energy and momentu, this last giv@ rise to tie lift. T7hiIe it- is passing through
the layer it imparts to the air a certak ~~ocity downward, and so is itself mowing through air
whose reIative velocity is not in the direction of flight. This velocity downward, whiclI modifies
the direction of the relative Telotity of the flow, & cwed the “ inducd dowmmsh” u’. Its

‘-”’
FIa.IS

effectis twofold. It evidently d~reases the geometrical angle of
r

tangent is $ or since U’ is small compared with F, by an angle ~.

angle of attack, i. e.,
!

Q=?; --------------

attack afl by an angle whose

This is called the” induced.”

------- -------- ------ (59)

SO that at=q —cq . . .

Again, since the resultant force on the wing is pirpendic~ar to the relative velocity, it9
direction is changed, thus @fig tie to ~ component par&ueI to the direction of “I&ht but in an
opposite direction. This component therefore opposes the motion of the wing, and is called
the “induced” dnag, DJ, to &t@@gh itfrom the ofiary drag due to the viscosity of the

.—.

.—.

——

-—

.-

-.

.-

—

—

—= .—
.-

—

-—-

.—
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air, The magnitude of the lift is not much affected by this change in the relative wind. It.
is evident from the geometry that if dx is an element along the straight Iine representing the
span and dD{ and dL tire the corresponding induced drag and lift,

dDd=$dL. --.--. --.--------------- .----... (flfl)

It is inipoi%m”t to determine the connection between u’, the induced down wash, i-ml u,
the iinal downward velocity in the vertical layers of air after the wing has passed through.
In one secnnd the wi~ movw forward a distance V;-iind tlierefore the kinetic energy imparted
to the air in a layer of thickness. ~ aquals the product of the downward impulse (i. e., clL in

this case) by the mean of the initiaI and final downward velocity, viz,
J

~ dL. considered

also “in terms of the induced drag,
Therefore

this energy equals J VdDi which, from ‘(60), equaIs J u’ dL.

~’=; --.:.-, -- --.---- -------- ------ -------- KU)

R MINIMUM INDUCZD DRAG

An important quwtion in regard to the wing is: Assuming a definite total lift, what dis-
tribution of the lift. along the span will give rise to a minimum induced drag? Or, ctdling
downward momentum imparted to the air in one second G (i. e., the lift) and the kinetic energy
T, what is the distribution of lift such that for a slight modification in the flow 6T= O while
G= constant? Let there be a slight change in the flow brought about by the addition of a
flow d&md by a velocity potential p. The impulse per unit length along the span rcquir&i
tQ produce this flow is – p q. Tlmrefore the increase .in momentum would be – pJ w dx
along tho span, This must equal zero, since G is constant. The impulse acts upon air already

.
flowing downwad with velocity u’=; u, hence the increase in kinetic energy is the sum of

two terms, – ~ p J’ u p dx and the energy of the added flow itself, which may be ncglectcd

since it is.. proportiolial to the square of the added velocity, which may be assumed small.

Hencel since dT= 0, ~ p~u.p dx=O. Therefore, to satisfy both conditions, u= const. along

the spin, and the induced angle of attack is the same ~t all points. It is easy to see thatrthis is
the condition for a minimum (and not a maximum). (In the case of a biplane without sttigger,
the same condition of u = ccmet. would be true over .b.oth wings.)

In one second. the wing advances a distance V and imparts, therefore, a downward velocity
u, constant along the span, and a momentum equal to the lift. Let KP be the apparent trans-
verse mass of the projection of the wing on a transverse vertical plane due to the flow in the
plane (e. g., monoplane wing wouId give practically a straight line of length b, equal to the
span); that is, it is the apparent transverse mass ofla surface whose edge is the projection
referred ta and whose depth is unity. Since the surface described in. one.~econd as the wing
advances a distance V has as ita edge the projection mentioned and a depth T’, the apparent
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mass set in motion in one second is KP F, and the momentum imparted in
~P Vu This must eqmd the Iift. Therefore

.
L

‘= PKV---- –-------- ——— -----

for the case of minimum induced drag.

123

one second is -

._--_ ---- _._(62)

The kinetic energy imparted in o?e seoond is ~ Kp V. u’ and this must equal D~ V;

therefore,

-La
. ------ -------- ------ ------ -- (63)

4$V’.K .

Further
‘ D~.,, L

%=;=~= .-.------------. –(64)
~ ; V2-K----”--”

Siice in the neighborhood of a minim ~) ProPerti= ~WV slo~IYY ~hese v~u= of Df.f. ~d ~

may be used for other cases of Iift distribution also.
The two dimensiomd flow in the transverse vertical plane about a line of length b equal

to the span has already been discussed, viz, for the case of uniform velocity u downward at
all points of the line, from (13’)

Hence, for points on the line,.

“.=*U$J’-(:’)

.

which cmresponds to an impdse per unit length (along the chord) of p 9 u ~
41-W -

See (la).
In one second this unit length advances a distance V and communicates a momentum L,, where
L, is the lift per unit length of the span; since this momentum is imparted over a length V, the

momentum imparted per tit ~wth is+. ~erefore

where

Hence

and therefore, on substituting for u its value in terms of L,

.—

.-—

.—

.

. .—

—. —

d;=.& SiIl &
------ --------------------- ------- (65)

Tb

.—
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This particular distribution of lift along the span, corresponding to minimum induced drag, is
called elliptical, because since .... “.X-

=$ COS & and

the points (z, y) lie on a semiellipse.

Returning to the values found for D~ and ~, the value of ~ may be substituted, viz, r !I

Therefore
.-. .. .,—

L_ —----- -------- ------ -------- -..r-- (07). _---–
%’ ,.. —... . .

# 2. p
9

The effective ang~e of attack varies from point h point along the span. It has been proved that
for an element of the wing, of area S, over which a is constant

If a, is the effective angle of attack for an element cZzof the span,

dL=l?r $ W,. c dz where i is the chord

Hence
dL 1 ‘“

a’=%=

Therefore substituting for # from (65)

Calling the geometrical angle of attack CCa,it is evident that

Hence

-. .—

. ..—

J —

-—

.-

C.GENERAL CASE OF CALCULATIONOF INDUCED DIIAGWHEN DIS’J%IBUTIONOF LIFTALONG ~“ SPAN 1SKNOWN

In case, however, that the induced downwash is notwonstant along the span, the induced
drag is not a minimum and the distribution of lift is not elliptical; so the formulas just deduced
for a, and afl do not hold.. For the case of a +ariable transverse velocity along the span use
can be made of the general formula (27’)
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Hence the d~erence of potential between opposite points is

b (A1sin&+A2sin%’ao+ - .)

and therefore, by the same argument as before,

dL
~=blll (Al sin 60+ A2sinlMo+ - -).-. -___ -_--------_ --_-(7o)

Consequently, if # is specified at all points of the span, ~& ‘~- may be expanded in a Four-

ier’s series and, the values of the constants being thus determined, the flow is @own, etc.
In this general case, by (29),

and
1

u’ 3U 1
. q=v=~=~o (Al sin &+!iM, sin$%O+etc.)--------_-----.-(i’I)

dDi
Further, since ~= ZI

DI =
s

* dL os63“(Al sin 60+2A, sin $?&+etc.) (Al sin 60+ AZsin 980+ etc.) d&.~ W#z=p ~ ,

()
b ‘(A:+M~+ . .

. ‘;P 3

(In the case of minimum induced drag, we found, (66) and

Dt~iB=
LZ

#;P

‘“)-----------–--------– --m
preceding, the values

where u = Al in the general formula, i. e.

which shows, since A%, A8, etc.z are small compared with ~1, that Di~{m—and therefore the

corresponding cq-may be used even in the general case of variable downwash).

D. EFFECT OF lNDIT3!IONEPON LIFJ!AND ROILING MOMENTS

The problem of deducing Dt and cq has been solved, then, for the case when
dL .
~ ~ given for

alI points of the spin. ~orkider.now the problem of “the angle of attack being lmown at each
point, is there any simple plan form which wiII permit a solution?

.

.—

.—

.-
.

-.
—___

-.

.
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It has been
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proved that

$
ae = ~+. - - .-..+.,,. -- .- .=-- ,—-

$?Tc”:E p
f?

dL-
and that ~ = h Vp (~1 sin ~. +ila sin f&+ . ‘. .)

E&w” the general term is

se=+..z., .. ... ... ----------- ------ :---- ---:---:(73)

Further, the general term in a~, as given in (71), is

7-LA%sinn80
af=~vsintio“=----”---:--’”:------------------(74)

Therefore one is a constant times the other if c is proportional to sin 80at each point of the span,

For an ellipse of semiaxw ~ and ~ formed as the plan of the wing

hence, since
1?
-X=cos 806

c=(lsin 60

Therefore such an elIipticaJ wing makes a, proportional ta a.
Further, since the area

~==j c.~bc=~tind
2“3’4 o-

The same formula holds for a semiellipse. “
For such a plan form, then, the general terx are _____ -

~,= An sin n ~. . . ... ... -. . ._,._.

2 v. sh180$- (
and

~=~c=$n~ae fib
For the first term, i. e., n= f

.

-.

. . . . . -—- ...— .—. —

and for the general case

an==~v.#,ha[o+%)41sin’0+(’+$)~,s~~’o+● “*1---------(75)
o

or
9s’ (?

-.--
2VC —sin80 .afl=

/? (9
l+g~ A,sii do+ 1+$ A2sin”2/io+ . . . . . ..(76a)

.“ .
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Therefore, if czais specified over the span of an elliptic v@, the Fourier expansion gives values.
for the ~’s, and these may be substituted in the formulas previously found, viz:

‘#=bVp (fil sin 130+A2 sin i?& +etc.]

()b‘ (A; +S?kt$ +etc.] - ‘D,=; p ~

The entire lift

So only the fist term has any effect, and

J

H@
L=b VpA1 ~P sin 60dx

n- &c
or replacing sin & by ita value – — and Al by~11

(since only the fit term counts),

. L+% 1 J●m
. 2T aa. CdZ ....--..---..--...-(76)

l+g -w

Expressed in terms of the effeotive angle of attack,

hence

ae= a>~--..- ----------L-------------- (77)

1+~

If there were no induction, an would equal a.. So the effect of induction is to reduce a, in the

9s
ratio l:l+~.

The roLling momenti X =
J

*P dL
. z-dz along the span.

-~ z
Hence

.

Therefore only the second tarm in ~~ as given in (7o), haa any tied, and, substituting in the

original formula for hf,

Sw
~=h VPA, _m Sk ~~o.z.h

_-—

.-

.-

--

. ..—

,,—

---

—

.—

.—

—

--

—
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Further, using only the second term in (75a) for art

hence

or, since

Consequently

M=i T7'"2rJ+bnc~x.agdz .- . . . ..-. ----- . . . ..-. ---. -(78~
1+$ -bfl -.

. . ..- -

Exprwsed in terms of effective angle of ~ttack _ —

d;=%’r .;v.c.ae

Therefore the rolling moment, by its original definition,

~={.T7a2T [*c. x.a,dx
z J-w “

hence
a

Cle=
--%

—.

1 +~

find it is seen that so far as such momenta are concerned,

4s
in the ratio 1 :1 +-b;.

.-

—. —. —
-.

the dfect of indu@ion is to reduce .c+

E.NOTE CONCERNING BIPLANES

Since Di=
L2

where KP is the appment mass for a two-dimensional flow in the trms-
4@K

verse pIane; and, since, for a bipkme, K is greater. than for a Si@e wing, D{ is less, other
things being equal. Thus, if K applies to a biplane of a certain total area and spfin b, and
K, to a monophme of the same total men find of span 51, the iift is the same for the two, and”
if ~he induced- dr~~ is to be the same .—

or if

The value of K is known for different coinbirmtiom- of wings;

— .—

—

. . .

and k may thus be deduced.
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CONCLUSION

For a wiqg of span b and chord c, the area being S’, if aa is the geometrical angle of attack
at a point z of the span, --

s
L=i?r~W& ::a#x

1+~

i. e., the effect of induction on the lift is to reduce the effect of the angle of attack in the ratio .—

2s
of I:l+F.

i. e., the effect of induction on rolling moment is to reduce the effect of the angle of attack in
4s

theratio 1:1 +~.

PROPELLER THEORY

INTRODUCTION

The purpose of a them-y of the action of a propeller is to combine with Froude’s slip-
stream theory a theory of the action of the elements of the bladm as airfoils. These elements
actually move along spiral paths; but it is possible to simplify the treatment by considering
the blades as a single element of area S. Often one can treat the blades as having a definite
section, and the blade area as concentrated at one point, say 70 per cent of the radius from the
axis. In hfunk’s treatment of the subjeot he assumes that, as the flight velocity ~and the tip
~elocity ~ of the blades are varied, the “shape” of the slip stream does not vary, although its
velocity w does. Under these circumstances v is obviously a linear function of T and ~ so
long as the aerodynamic properties of the blade elements remain unchanged.

Under these circumstances, not simply can the efficiency of the propeIIer be calculated in

terms of known quantiti-, but also a formul~ for ~~ which enables one to compute the

thrust for any value of ~.

12e~wenc.ss.-b!tmk-halysis of TT. F. Durand’s and E. P. Iksley’s Propeller Tests.
IT. ~. C. ~. TeohnimI Report No. 175. Notes on PropelIer Design. If. A. C. A. Technical
Notes 91, 92, 93, 94. “

FEOUDErSSIJTSTEEAM ‘IHEOEY

If the aircraft is mo-rir.ugwith a velocity ‘F through air otherwise at rest, the pppelIer sets
in motion backward a slip-stream whose fiRaI mean -ielocity may be called v. The sir actually
pass~u though the prop~er has beady had imparted to it a portion of this velocity, and, by -,

general principles of mechanics, this additional vebeity may be proved to be approximately one-
half of v. For, imagine the aircraft at rest-as b a wind-tunnel e.xperiment-aud placed in a
stream of air ha@U the velocity ~. Let the propeLler be revolving as USUSJ,and let the velocity
of the air through the propeller be called T+ w. Let the bal velocity of the slip-stremn be
called v as above. If m is the mass of air passing per unit time, the thrust of the yropeller is
nw. This forca acts “on,air mo~” ii-ith ~elocity T+ tia hence the work done “perunit”time is
nw( Y%). ” Thiii ii equal tti the iitcredwi ‘of-the Iii.netic erie~ of the air, viz.:

.-
.

.-
—

. ..-

-- --—

.—

--———

——

..=

()*7n(?7+u)’-@nT~=?nl) F+; “
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Therefore .-. . .,—

and

or

w=~-. -~:------: -J------------------ ”---- J=(79)
~

The mass passing the propeller disk per unit time is

()
.LYj V+; PU

therefore the thrust

()
T~LY: V+; PV

T

()
= 1 ,.; Il=cr ----. -.. ---. --. ---... -----.(80)

D2ZJ”2!?

49
an absolute coefficient.

If tie ratio ~ iSsma~, C,=$!, or ~=~ c.; but this approximation can be used ody for small

values of CT.

THE SLIPCURVE

Since, as explained above, the assumptions made justify one in writing v as a hnear function
of V, the velocity of flight, and of U ( = roll), the tip velocity, we may write

{T-(w---------------,-,-,-----+’. ..__;
is the magnitude of the r~~ti~e u

----- .-
u

()
where, ~ (t “ tip velocity for which the slip-stremn velocity,

and therefore the thrust, is zero. Therefore, if ~ is plotted against ~, the result is a straight

line, (If in any actual propeller test, this plot is not such a straight line, it proves that the
assumptions made above do not hokl for this test.) T& prediction is welI supported by actual

(
teets, The curve is celled the” slip curve” and m =

)
-&for constant 1’ is calkd the slip modu-

lus. In plotting the curves the experimental vtdues are formed by writing

Munk discusses these actual curves very fully in his papers. One consequence to be noted is
that, as a result of tests already made, m is known for propellers of various types and of differ-
ent blade width, and that its value does not diiler greatly from one-eighth for ordinary
propellers. Munk also shows how the effective pitch maybe calculated.

THE SLIPMODULUS

With certain assumptions, the slip modulus may be calculated. Consider a propeller
with narrow blades whose sections are “ideal” and whose pitch ratio is small. With such a
propeIler the influence of the slip stream on the effective angle of attack may be neglected.
Consider the total effective blade area S concentrated at the distance 0.77 from the axis.

—-
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For small angles of attack, the thrust (i. e., the lift) T=,??A ~ Vfct, where Vi is the

relative velocity of the air and a is the small angje of attack. This maybe calculated as follows:

if U’ is the tangential velocity of the propeller at the point where S is considered, i. e., i?’= 0.7 C.
Let ZJ’Obe such a tangential velocity m causes zero thrust at -reIocit,y K If tanq equals

~ ~d if U iS ~cre~ed s~htly? the r-~t~g wale of attack on the blade area ~ iS

FIG. 1s

dE’ 1
a= —dp=~ I-Tfe z -------------- 2------ —---- (82]‘

..

.-.—
--

.-

‘ 1+(,;)

Therefore

T=2=sg Tad+

and

(?,=8 ~- ‘$ “

Since C=is small, it equakg ~ so that ~ = 1 ~d~. But d t7’ =

the change d ~, the thrust, and therefore v vmre zero, the slip stream

such that. = rnd17= m ‘$$’,

:.0.7 , “

m=b=
o.74$ -------

T

.&. -

—

..-
.—--

0. 7d i?; and, since before —

which results from d U is
——

------------ ------- (83) “

The fact that m is greater for propelIem of greater mean blade width is coniirmed by experiment. —
In the calcuktion gi-ren abo-re it is assumed that

increased is d U’; but, as a matter of fact, there is an

Z?’, which affects the angle of attack. Writing cot p

the only change when the tip velocity is

additional mlocity $ at right angles to

r’.—
r’

-{’+(+91’’=%-:$”
Further,

——
dv=mdlJ=m~d U’

Hence the angIe of attack
1

u, %0-W -------------------(82a) ““ ‘:.
.=–dP=j +(T)

and

‘=U4W-%) —
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The ratio ~ appearing here is the value at zero thrust, and this should be indicated by writing

r’)70
0 Solving the equation for m,

~:74s~-
~. ------- ------ ------ --

()

----- .- (83s/) ‘“
1+ ..364; ; ~

The” nominal blade width ratio,” d l?O2$, is known for a propeller under test, an ( may be de-

termined; so m= ~ maybe calculated. (In one test, calculation gave 0.19, and observations

of the slip curve gave 0.139.)

Since this constant m may thus be considered known, ;T maybe calculated for any value of

~ and therefore Cr is known and heuce T, the thrust.

TORQUE

The propeller efficiency is the ratio of TV to the prover delivered, that is, to the product of
the torque Q by a, the angular velocity.

?=$&----_--- --~---s-------------s--. (84)

But T = (k. D’ ~. V’ ~, and a new coefficient CQmaybe defined such that.

‘Q= CQ”:”~~- v$------------------------- (85) ‘

Then
c,v c,v

‘= —TD=qT ----------------------------- ’86)Cq --

The power delivered may be thought of as being spent in three ways: (1) As absorbed in thrust,
T7

i, e., Qlw= TV, and therefore, since TI = 1, the corresponding CQ1 = C’T”~; (2) m ahsor~ed in

buildi~~ up the slip stream, i. e.,
g ~7

Q,w =- T+, and, since ~, = ~ , the corresponding

cQ,=CT$”&;(3) ~ absorbed by friction, etc. Hence its corresponding ~Q~ = ~q

This is equivalent to a drag coefficient of the blades which may be calculatal as follows:
If S is the effective blade area, placed at a distance Q.7r from the axis, its tangential velocity is

,7 Uj therefore, calling

in overcoming this is
.,

This must equal

~he drag coefficient ~D1 the drag is CDS ~ (.7 U)Z, and the power spent

0.s ; (.7 u)’ (:7 u)

()QtU=~Q~~U.@<V2$

=~~,uDz: Va>

.

—
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Therefore

~2~ ~

CD= CQ, -7U z~ ------------ -–--—---.----(87)

()
s. ~

For actual propellem Munk states that CD = 0.0,?5 approximately.
If there were no frictional Ioses, the efficiency would equal

1
I’tnuz= ~ ~ ---------- ----:--------------- (88)

1+$~

and, since CTis known in terms of ~-, and T is known in terms of Cr, this maximum efficiency
r

may be expressed in terms of T.
THETORQUE SLIPCURVE

The slip curve described previously is derived from knowledge of the thrust, and is
therefore more useful in the discussion of data obtained from model tests than in the case of
tests in actual flight, for in the latter the thrust is an indefinite quantity-o far as theory is con-
cerned. The theoretical value of the alip modulus, m, is derived only by making obvious
assumptions, end, rather than trying to improve the theory, it is better to compare the theoret-i-
cal value with observed values, obtained from the study of actual slip curves for propellers in
fright. Again, in studying the properties of diHerentpropellem in flight, it is better to start with
the knowledge of the torque or power and to deduce a different type of slip curve, because the
power is much more definite than the thrust. Further, propellers are designed to absorb a given
horsepower at a certain number of revolut.ions. Consequently, Munk describes a new slip
modulus referrirygto the torque as modiiied by the interference of the fuselage, et~

Define a power coefficient . . .

G= P
------ ------ ------ ------ ------ -- (89)

~~ J7zDz~

Then, since

and, since in the absence of viscosity the efficiency -

ml .-
7- 1 +2 ~-

the “ ide~” ~efficient Tould have the due

The actual coefficient is of course larger. Then in terms of the actual coefficients G and C,
define a slip velocity v’ by the equition .

cr=G~+; \)-----_ ---------------. -.-------_(90)

——
.-

.—

-. .—

.—
—

—

----

_.—.

——-

—

-—

.—

—



134 REPORT NATIONAL ADWOBY COM~mEE FOR AERONAU~CS . . --- .-

In other words, v’ is derived from the knowledge of the torque, as v is from that of the thrust.
v’ is slightly greater than w .- .—

The curve of ~ plotted against ~ is called the” torque slip curve,” and by studying the two

curves, that of ~ and that of ~~ for actual propellers in fight? knowledge maybe obtained Wlfich

will enable the better application of data from model .test.s. —

In order to ~btti the values of $ from meuured quantities, it isnec~sary ~ derive a relation

between it and 0,. From the two equations :.

In N, ~. C!.A. Report No. 183”,Munk gives values of the solution of this equation, so that values
f

of ~, may be obtained, and then the corwponding torque slip curves,

$=’+(3I
may be plotted, These may then be compmed tith. t.be. ttit slip curv~,

+=4:-(3J “-
in which ~, is obtained from a knowledge of T. .

.Munk made a detailed study of the ~erformance of certain propellers as published in the
British ‘R. & hf. Nos. 586 and 704, a~d deduced. for compar~ti~e purpos~ the following
data:

1.
2.

3.

value,
the e~astic torsion of the blades..

These formulas and test data. am, of course, rn~st irnpor~ant- in- the study of sets of pro-
pellers and of the same propeller when attached to different engim; but they also are of direct
use to the engineer who wishes to design a new propeller.

Curves for m and m’.

Calculation of m from the theoretical formula, and the value of the correction factor
.—

—

(This varied from 0,97 to 1..1.3.)...- . . . . . . ._, .– . .–

Mean effective angle of attack, at 0.7 radius, cc= cot-’
(?

0.7
~ ~, Also the observed —

The difference is to be attributed to the eflect of .th.e camber of the blade secti~ and tO - ,. -..


